Easy Tutorial
For Competitive Exams

CBSE 10th Maths -  Coordinate Geometry - Exercise 7.1

Question 1 Find the distance between the following pairs of points:
(i) (2, 3), (4, 1)
(ii) (-5, 7), (-1, 3)
(iii) (a, b), (- a, – b)
Solution:

(i) (2, 3), (4, 1)

Distance between two points $(x_{1},y_{1})$ and $(x_{2},y_{2})$ is given by

$\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$

Therefore distance between two points(2,3) and (4,1) is given by

=$\sqrt{(4-2)^{2}+(1-3)^{2}}$

=$\sqrt{(2)^{2}+(-2)^{2}}$

=$\sqrt{4+4}$

=$\sqrt{8}$

=$2\sqrt{2}$

(ii) (-5, 7), (-1, 3)

Distance between two points(-5,7) and (-1,3) is given by

=$\sqrt{(-1)-(-5))^{2}+(3-7)^{2}}$

=$\sqrt{(4))^{2}+(-4)^{2}}$

=$\sqrt{16+16}$

=$\sqrt{32}$

=$4\sqrt{2}$

(iii) (a, b), (- a, – b)

Distance between two points(a,b) and (-a,-b) is given by

=$\sqrt{(-a-a))^{2}+(-b-b)^{2}}$

=$\sqrt{(-2a)^{2}+(-2b)^{2}}$

=$\sqrt{(4a)^{2}+(4b)^{2}}$

=$2\sqrt{a^{2}+b^{2}}$

Question 2 Find the distance between the points (0, 0) and (36, 15). Can you now find the distance between the two towns A and B discussed in Section 7.2.
Solution:

Let us consider, town A at point (0, 0). Therefore, town B will be at point (36, 15).

Distance between points(0,0) and (36,15)

Now Distance between two points $(x_{1},y_{1})$ and $(x_{2},y_{2})$ is given by

$\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$

=$\sqrt{(36-0)^{2}+(15-0)^{2}}$

=$\sqrt{(36)^{2}+(15)^{2}}$

=$\sqrt{1296+225}$

=$\sqrt{1521}$

=39

In section 7.2, A is (4,0) and B is (6,0).

$AB^{2}$ = $(6 - 4)^{2} - (0 - 0)^{2}$ = 4

The distance between town A and B will be 39 km.

The distance between the two towns A and B discussed in Section 7.2 is 4 km.

Question 3 Determine if the points (1, 5), (2, 3) and (-2, -11) are collinear.
Solution:

The sum of the lengths of any two line segments is equal to the length of the third line segment then all three points are collinear.

Consider, A = (1, 5) B = (2, 3) and C = (-2, -11)

Find the distance between points; say AB, BC and CA

AB=$\sqrt{(2-1)^{2}+(3-5)^{2}}$=$\sqrt{5}$

BC=$\sqrt{(-2-2)^{2}+(-11-3)^{2}}$

=$\sqrt{(-4)^{2}+(-14)^{2}}$

= $ \sqrt{16+196}$

= $\sqrt{212}$

CA=$\sqrt{(-2-1)^{2}+(-11-5)^{2}}$

= $\sqrt{(-3)^{2}+(-16)^{2}}$

= $\sqrt{9+256}$

= $ \sqrt{265}$

Since AB + BC ≠ CA

Therefore, the points (1, 5), (2, 3), and ( – 2, – 11) are not collinear.

Question 4 Check whether (5, – 2), (6, 4) and (7, – 2) are the vertices of an isosceles triangle.
Solution:

Since two sides of any isosceles triangle are equal.

To check whether given points are vertices of an isosceles triangle, we will find the distance between all the points.

Let the points (5, – 2), (6, 4), and (7, – 2) are representing the vertices A, B, and C respectively.

AB=$\sqrt{(6-5)^{2}+(4+2)^{2}}$

=$ \sqrt{(-1)^{2}+(6)^{2}}$

=$ \sqrt{1+36}$

= $ \sqrt{37}$

BC=$\sqrt{(7-6)^{2}+(-2-4)^{2}}$

= $ \sqrt{(-1)^{2}+(6)^{2}}$

= $\sqrt{1+36}$

=$ \sqrt{37}$

CA=$\sqrt{(7-5)^{2}+(-2+2)^{2}}$

=$\sqrt{(-2)^{2}+(0)^{2}}$

=2

Here AB=BC=$ \sqrt{37}$

This implies, whether given points are vertices of an isosceles triangle.

Question 5 In a classroom, 4 friends are seated at the points A, B, C and D as shown in Fig. 7.8. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli, “Don’t you think ABCD is a square?” Chameli disagrees. Using distance formula, find which of them is correct.
Solution:

From figure, the coordinates of points A, B, C and D are (3, 4), (6, 7), (9, 4) and (6,1).

Find distance between points using distance formula, we get

AB= $\sqrt{(6-3)^{2}+(7-4)^{2}}$

$ = \sqrt{(-3)^{2}+(-3)^{2}}$

$ = \sqrt{9+9}$

= $ \sqrt{18}$

$= 3\sqrt{2}$

BC= $\sqrt{(9-6)^{2}+(4-7)^{2}}$

$= \sqrt{(3)^{2}+(-3)^{2}}$

$ = \sqrt{9+9}$

$= \sqrt{18}$

$= 3\sqrt{2}$

CD=$\sqrt{(6-9)^{2}+(1-4)^{2}}$

$ = \sqrt{(-3)^{2}+(-3)^{2}}$

$ = \sqrt{9+9}$

$ = \sqrt{18}$

$3\sqrt{2}$

AD=$ \sqrt{(6-3)^{2}+(1-4)^{2}}$

$ = \sqrt{(3)^{2}+(-3)^{2}}$

$ = \sqrt{9+9}$

$= \sqrt{18}$

$= 3\sqrt{2}$

Diagonal AC= $\sqrt{(3-9)^{2}+(4-4)^{2}}$

$ \sqrt{(-6)^{2}+(0)^{2}}$

=6

Diagonal BD=$\sqrt{(6-6)^{2}+(7-1)^{2}}$

$ \sqrt{(0)^{2}+(6)^{2}}$

=6

Here , all sides of this square are of same length and also diagonals are of same length.

So,ABCD is a square and hence Champa was correct.

Question 6 Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:
(i) (- 1, – 2), (1, 0), (- 1, 2), (- 3, 0)
(ii) (- 3, 5), (3, 1), (0, 3), (- 1, – 4)
(iii) (4, 5), (7, 6), (4, 3), (1, 2)
Solution:

(i) (- 1, – 2), (1, 0), (- 1, 2), (- 3, 0)

Let the points (- 1, – 2), (1, 0), ( – 1, 2), and ( – 3, 0) be representing the vertices A, B, C, and D of the given quadrilateral respectively.

AB= $\sqrt{(1+1)^{2}+(0+2)^{2}}$

= $ \sqrt{(2)^{2}+(2)^{2}}$

=$ \sqrt{4+4}$

= $ \sqrt{8}$

=$2\sqrt{2}$

BC=$\sqrt{(-1-1)^{2}+(2-0)^{2}}$

=$ \sqrt{(-2)^{2}+(2)^{2}}$

=$\sqrt{4+4}$

= $ \sqrt{8}$

=$2\sqrt{2}$

CD= $\sqrt{(-3+1)^{2}+(0-2)^{2}}$

=$\sqrt{(-2)^{2}+(-2)^{2}}$

=$\sqrt{4+4}$

=$\sqrt{8}$

=$2\sqrt{2}$

AD=$ \sqrt{(-3+1)^{2}+(0-2)^{2}}$

=$\sqrt{(-2)^{2}+(-2)^{2}}$

=$\sqrt{4+4}$

= $\sqrt{8}$

=$2\sqrt{2}$

Diagonal AC=$\sqrt{(-1+1)^{2}+(2+2)^{2}}$

=$\sqrt{(0)^{2}+(4)^{2}}$

=$\sqrt{16}$

=4

Diagonal BD=$\sqrt{(-3-1)^{2}+(0-0)^{2}}$

=$\sqrt{(-4)^{2}+(0)^{2}}$

=$\sqrt{16}$

=4

Side length = AB = BC = CD = DA =$2\sqrt{2}$

Diagonal Measure = AC = BD = 4

Therefore, the given points are the vertices of a square.

(ii) (- 3, 5), (3, 1), (0, 3), (- 1, – 4)

Let the points (- 3, 5), (3, 1), (0, 3), and ( – 1, – 4) be representing the vertices A, B, C, and D of the given quadrilateral respectively.

AB=$\sqrt{(-3-3)^{2}+(1-5)^{2}}$

=$\sqrt{(-6)^{2}+(-4)^{2}}$

= $\sqrt{36+16}$

=$\sqrt{52}$

= $2\sqrt{13}$

BC= $\sqrt{(0-3)^{2}+(3-1)^{2}}$

=$\sqrt{(-3)^{2}+(2)^{2}}$

= $\sqrt{9+4}$

= $\sqrt{13}$

CD= $ \sqrt{(-1-0)^{2}+(-4-3)^{2}}$

= $\sqrt{(1)^{2}+(7)^{2}}$

=$ \sqrt{1+49}$

=$ \sqrt{50}$

= $5\sqrt{2}$

AD= $\sqrt{(-1+3)^{2}+(-4-5)^{2}}$

= $\sqrt{(2)^{2}+(-9)^{2}}$

=$ \sqrt{4+81}$

= $\sqrt{85}$

Its also seen that points A, B and C are collinear.

So, the given points can only form 3 sides i.e, a triangle and not a quadrilateral which has 4 sides.

Therefore, the given points cannot form a general quadrilateral.

(iii) (4, 5), (7, 6), (4, 3), (1, 2)

Let the points (4, 5), (7, 6), (4, 3), and (1, 2) be representing the vertices A, B, C, and D of the given quadrilateral respectively.

AB=$\sqrt{(7-4)^{2}+(6-5)^{2}}$

=$\sqrt{(3)^{2}+(-1)^{2}}$

=$ \sqrt{9+1}$

= $ \sqrt{10}$

BC=$\sqrt{(4-7)^{2}+(3-6)^{2}}$

= $\sqrt{(-3)^{2}+(-3)^{2}}$

= $\sqrt{9+8}$

= $\sqrt{18}$

CD=$\sqrt{(1-4)^{2}+(2-3)^{2}}$

= $\sqrt{(-3)^{2}+(-1)^{2}}$

= $\sqrt{9+1}$

= $ \sqrt{10}$

AD= $\sqrt{(1-4)^{2}+(2-5)^{2}}$

=$ \sqrt{(-3)^{2}+(-3)^{2}}$

=$\sqrt{9+9}$

= $ \sqrt{18}$

Diagonal AC= $\sqrt{(4-4)^{2}+(3-5)^{2}}$

= $\sqrt{(0)^{2}+(-2)^{2}}$

=$ \sqrt{0+4}$

=2

Diagonal BD=$\sqrt{(1-7)^{2}+(2-6)^{2}}$

=$ \sqrt{(-6)^{2}+(-4)^{2}}$

=$ \sqrt{36+16}$

=$\sqrt{52}$

=$13\sqrt{2}$

Opposite sides of this quadrilateral are of the same length. However, the diagonals are of different lengths.

Therefore, the given points are

the vertices of a parallelogram.

Question 7 Find the point on the x-axis which is equidistant from (2, – 5) and (- 2, 9).
Solution:

We have to find point on x axis.So,its y coordinate will be 0.

Let point on x-axis be (x,0)

Distance between (x,0) and (2,-5)

= $\sqrt{(2-x)^{2}+(-5-0)^{2}}$

= $\sqrt{(2-x)^{2}+(-5)^{2}}$

= $\sqrt{(2-x)^{2}+(25)}$

Distance between (x,0) and (-2,9)

= $ \sqrt{(-2-x)^{2}+(9-0)^{2}}$

= $\sqrt{(-2-x)^{2}+(9)^{2}}$

= $\sqrt{(-2-x)^{2}+(81)}$

By given condition these distances are equal in measure.

$\sqrt{(2-x)^{2}+(25)}$= $\sqrt{(-2-x)^{2}+(81)}$

Simplify the above equation, Remove square root by taking square both the sides, we get $(2-x)^{2}+(25)=(-2-x)^{2}+(81)$ $(2-x)^{2}+(25)=[-(2+x)]^{2}+(81)$ $(2-x)^{2}+(25)=(2+x)^{2}+(81)$

$(x)^{2}+4-4x+25$=$ (x)^{2}+4+4x+81$

8x=25-81

8x=25-81

8x=-56

x=-7

Therefore the point is(-7,0).

Question 8 Find the values of y for which the distance between the points P (2, – 3) and Q (10, y) is 10 units.
Solution:

Given that distance between (2,-3) and (10,y) is 10

Therefore using distance formula

PQ=$\sqrt{(10-2)^{2}+(y+3)^{2}}$=10

$\sqrt{(8)^{2}+(y+3)^{2}}$=10

Simplify the above equation and find the value of y. Squaring both sides,

$64+(y+3)^{2}$=100

$(y+3)^{2}$=36

y+3=$\pm$ 6

y+3=6 or y+3=-6

Therefore y=3 or -9

Question 9 If Q (0, 1) is equidistant from P (5, – 3) and R (x, 6), find the values of x. Also find the distance QR and PR.
Solution:

Given: Q (0, 1) is equidistant from P (5, – 3) and R (x, 6), which means PQ = QR

Step 1: Find the distance between PQ and QR using distance formula,

PQ=$\sqrt{(5-0)^{2}+(-3-1)^{2}} $

=$\sqrt{(5)^{2}+(-4)^{2}} $

= $\sqrt{25+16} $

= 41

QR = $ \sqrt{(0-x)^{2}+(1-6)^{2}}$

= $ \sqrt{(-x)^{2}+(-5)^{2}}$

= $ \sqrt{(x)^{2}+25}$

=$x^{2}+25$

Step 2: Use PQ=QR

$\sqrt{41}$=$\sqrt{x^{2}+25}$

Squaring both the sides, to omit square root

41 = x2 + 25

$x^{2}$ = 16

x = ± 4

x = 4 or x = -4

Coordinates of Point R will bet R is (4,6) or (-4,6)

When point R is (4,6)

PR= $\sqrt{(5-4)^{2}+(-3-6)^{2}}$

=$ \sqrt{(1)^{2}+(-9)^{2}} $

= $ \sqrt{1+81} $

=$ \sqrt{82}$

QR=$ \sqrt{(0-4)^{2}+(1-6)^{2}} $

= $\sqrt{(-4)^{2}+(-5)^{2}} $

=$ \sqrt{16+25} $

= $\sqrt{41} $

When point R is (-4,6)

PR=$\sqrt{(5-(-4))^{2}+(-3-6)^{2}}$

=$ \sqrt{(9)^{2}+(-9)^{2}}$

= $\sqrt{81+81}$

=9$ \sqrt{2} $

QR= $\sqrt{(0-(-4))^{2}+(1-6)^{2}}$

=$ \sqrt{(4)^{2}+(-5)^{2}} $

=$\sqrt{16+25} $

= $\sqrt{41} $

Question 10 Find a relation between x and y such that the point (x, y) is equidistant from the point (3, 6) and (- 3, 4).
Solution:

Point (x,y) is equidistant from (3,6) and (-3,4)

Therefore $\sqrt{(x-3)^{2}+(y-6)^{2}}$ = $ \sqrt{(x-(-3))^{2}+(y-4)^{2}} $

$ \sqrt{(x-3)^{2}+(y-6)^{2}}$ = $\sqrt{(x+3)^{2}+(y-4)^{2}} $

$ (x-3)^{2}+(y-6)^{2}$ =$(x+3)^{2}+(y-4)^{2}$

$x^{2}+9-6x+y^{2}+36-12y$=$x^{2}+9+6x+y^{2}+16-8y$

36-16=6x+6x+12y-8y

20=12x+4y

3x+y=5

3x+y-5=0

Share with Friends