Easy Tutorial
For Competitive Exams

CBSE 10th Maths Chapter 8 - Introduction to Trigonometry-Exercise 8.2

Question 1 Evaluate the following:
(i) sin 60° cos 30° + sin 30° cos 60°


(ii) $2 tan^{2} 45° + cos^{2} 30° – sin^{2} 60°$


(iii)$\dfrac{cos 45^\circ}{sec 30^\circ+cosec 30^\circ}$


(iv)$\dfrac{sin 30^\circ+tan 45^\circ-cosec 60^\circ}{sec 30^\circ+cos60^\circ+cot45^\circ}$


(v)$\dfrac{5cos^{2}60^\circ+4sec^{2}30^\circ-tan^{2}45^\circ}{sin^{2}30^\circ+cos^{2}30^\circ}$
Solution:

(i) sin 60° cos 30° + sin 30° cos 60°

First, find the values of the given trigonometric ratios

sin 30° = $\dfrac{1}{2}$

cos 30° = $\dfrac{\sqrt{3}}{2}$

sin 60° = $\dfrac{3}{2}$

cos 60°= $\dfrac{1}{2}$

Now, substitute the values in the given problem

sin 60° cos 30° + sin 30° cos 60° = $\dfrac{\sqrt{3}}{2}×\dfrac{\sqrt{3}}{2} + (\dfrac{1}{2}) ×(\dfrac{1}{2} )$ = $\dfrac{3}{4}+\dfrac{1}{4}$ = $\dfrac{4}{4}$ =1

(ii) $2 tan^{2} 45° + cos^{2} 30° – sin^{2} 60°$

We know that, the values of the trigonometric ratios are:

sin 60° =$\dfrac{ \sqrt{3}}{2}$

cos 30° = $\dfrac{\sqrt{3}}{2}$

tan 45° = 1

Substitute the values in the given problem

$2 tan^{2} 45° + cos^{2} 30° – sin^{2} 60°$ = $2(1)^{2} + (\sqrt{3}/2)^{2}-(\sqrt{3}/2)^{2}$

$2 tan^{2}45° + cos^{2} 30° – sin^{2} 60° $= 2 + 0

$2 tan^{2} 45° + cos^{2} 30° – sin^{2} 60°$ = 2

(iii) $\dfrac{cos 45°}{(sec 30°+cosec 30°)}$

We know that,

cos 45° = $\dfrac{1}{\sqrt{2}}$

sec 30° = $\dfrac{2}{\sqrt{3}}$

cosec 30° = 2

Substitute the values, we get

$\dfrac{cos 45^\circ}{sec 30^\circ+cosec 30^\circ}$

=$\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2}{\sqrt{3}}+2}$

=$\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2+2\sqrt{3}}{\sqrt{3}}}$

=$\dfrac{1}{\sqrt{2}}$ x $\dfrac{\sqrt{3}}{2+2\sqrt{3}}$

=$\dfrac{1}{\sqrt{2}}$ x $\dfrac{\sqrt{3}}{2(1+\sqrt{3}}$

=$\dfrac{\sqrt{3}}{2\sqrt{2}(1+\sqrt{3})}$

=$\dfrac{\sqrt{3}}{2\sqrt{2}(\sqrt{3}+1)}$

Now,rationalize the terms we get,

=$\dfrac{\sqrt{2}}{2\sqrt{2}(\sqrt{3}+1)}$x$\dfrac{\sqrt{3}-1}{\sqrt{3}-1}$

=$\dfrac{3-\sqrt{3}}{2\sqrt{2}(3-1)}$

=$\dfrac{3-\sqrt{3}}{2\sqrt{2}(2)}$

Now, multiply both the numerator and denominator by $\sqrt{2}$ , we get

=$\dfrac{3-\sqrt{3}}{2\sqrt{2}(2)}$x$\dfrac{\sqrt{2}}{\sqrt{2}}$

=$\dfrac{3\sqrt{2}-\sqrt{3}\sqrt{2}}{8}$

=$\dfrac{3\sqrt{2}-\sqrt{6}}{8}$

Therefore, $\dfrac{cos 45°}{(sec 30°+cosec 30°)}$ = $\dfrac{(3\sqrt{2} – \sqrt{6})}{8}$

(iv)$\dfrac{sin 30^\circ+tan 45^\circ-cosec 60^\circ}{sec 30^\circ+cos60^\circ+cot45^\circ}$

We know that,

sin 30° = $\dfrac{1}{2}$

tan 45° = 1

cosec 60° = $\dfrac{2}{\sqrt{3}}$

sec 30° = $\dfrac{2}{\sqrt{3}}$

cos 60° = $\dfrac{1}{2}$

cot 45° = 1

Substitute the values in the given problem, we get

$\dfrac{sin 30^\circ+tan 45^\circ-cosec 60^\circ}{sec 30^\circ+cos60^\circ+cot45^\circ}$

=$\dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{1}{2}+1}$

=$\dfrac{\dfrac{\sqrt{3}+2\sqrt{3}-4}{2\sqrt{3}}}{\dfrac{4+\sqrt{3}+2\sqrt{3}}{2\sqrt{3}}}$

Now cancel the term $ 2\sqrt{3}$,in numerator and denominator ,we get

=$\dfrac{\sqrt{3}+2\sqrt{3}-4}{4+\sqrt{3}+2\sqrt{3}}$

=$\dfrac{3\sqrt{3}-4}{3\sqrt{3}+4}$

Now,rationalize the terms

=$\dfrac{3\sqrt{3}-4}{3\sqrt{3}+4}$x$\dfrac{3\sqrt{3}}{3\sqrt{3}+4}$

=$\dfrac{27-12\sqrt{3}-12\sqrt{3}+16}{27-12\sqrt{3}+12\sqrt{3}+16}$

=$\dfrac{27-24\sqrt{3}+16}{11}$

=$\dfrac{43-24\sqrt{3}}{11}$

Therefore,

$\dfrac{sin 30^\circ+tan 45^\circ-cosec 60^\circ}{sec 30^\circ+cos60^\circ+cot45^\circ}$=$\dfrac{43-24\sqrt{3}}{11}$

(v)$\dfrac{5cos^{2}60^\circ+4sec^{2}30^\circ-tan^{2}45^\circ}{sin^{2}30^\circ+cos^{2}30^\circ}$

We know that,

cos 60° = $\dfrac{1}{2}$

sec 30° = $\dfrac{ 2}{\sqrt{3}}$

tan 45° = 1

sin 30° = $\dfrac{1}{2}$

cos 30° = $\dfrac{\sqrt{3}}{2}$

Now, substitute the values in the given problem, we get

$(5cos^{2}60° + 4sec^{2}30° – \dfrac{tan^{2}45°)}{(sin^{2} 30°} + cos^{2} 30°)$

= $\dfrac{5(\dfrac{1}{2})^{2}+4(\dfrac{2}{\sqrt{3}})^{2}-1^{2}}{(\dfrac{1}{2})^{2}+(\dfrac{\sqrt{3}}{2})^{2}}$

= $\dfrac{(\dfrac{5}{4}+\dfrac{16}{3}-1)}{(\dfrac{1}{4}+\dfrac{3}{4})}$

= $\dfrac{\dfrac{(15+64-12)}{12}}{(\dfrac{4}{4})}$

=$ \dfrac{67}{12}$

Question 2 Choose the correct option and justify your choice :
(i) $\dfrac{2tan 30°}{1+tan^{2}30°}$ =
(A) sin 60° (B) cos 60° (C) tan 60° (D) sin 30°


(ii) $\dfrac{1-tan^{2}45°}{1+tan^{2}45°}$ =
(A) tan 90° (B) 1 (C) sin 45° (D) 0


(iii) sin 2A = 2 sin A is true when A =
(A) 0° (B) 30° (C) 45° (D) 60°


(iv) $\dfrac{2tan30°}{1-tan^{2}30°}$ =
(A) cos 60° (B) sin 60° (C) tan 60° (D) sin 30°
Solution:

(i) (A) is correct.

Substitute the value of tan 30° in the given equation

tan 30° = $\dfrac{1}{\sqrt{3}}$

$\dfrac{2tan 30°}{1+tan^{2}30°}$ = $\dfrac{2(\dfrac{1}{\sqrt{3}})}{1+(\dfrac{1}{\sqrt{3}})^{2}}$

= $\dfrac{(\dfrac{2}{\sqrt{3}})}{(1+\dfrac{1}{3})}$ = $\dfrac{(\dfrac{2}{\sqrt{3}})}{(\dfrac{4}{3})}$

= $\dfrac{6}{4\sqrt{3}}$ = $\dfrac{\sqrt{3}}{2}$ = sin 60°

The obtained solution is equivalent to the trigonometric ratio sin 60°

(ii) (D) is correct.

Substitute the value of tan 45° in the given equation

tan 45° = 1

$\dfrac{1-tan^{2}45°}{1+tan^{2}45°}$ = $\dfrac{(1-1^{2})}{(1+1^{2})}$

= $\dfrac{0}{2}$ = 0

The solution of the above equation is 0.

(iii) (A) is correct.

To find the value of A, substitute the degree given in the options one by one

sin 2A = 2 sin A is true when A = 0°

As sin 2A = sin 0° = 0

2 sin A = 2 sin 0° = 2 × 0 = 0

or,

Apply the sin 2A formula, to find the degree value

sin 2A = 2sin A cos A

⇒2sin A cos A = 2 sin A

⇒ 2cos A = 2 ⇒ cos A = 1

Now, we have to check, to get the solution as 1, which degree value has to be applied.

When 0 degree is applied to cos value, i.e., cos 0 =1

Therefore, ⇒ A = 0°

(iv) (C) is correct.

Substitute the value of tan 30° in the given equation

tan 30° = $\dfrac{1}{\sqrt{3}}$

$\dfrac{2tan30°}{1-tan^{2}30°}$ = $\dfrac{2(\dfrac{1}{\sqrt{3}})}{1-(\dfrac{1}{\sqrt{3}})^{2}}$

=$\dfrac{ (\dfrac{2}{\sqrt{3}})}{(1-\dfrac{1}{3})}$ = $\dfrac{(\dfrac{2}{\sqrt{3}})}{(\dfrac{2}{3})}$ = $\sqrt{3}$ = tan 60°

The value of the given equation is equivalent to tan 60°.

Question 3 If tan (A + B) = $\sqrt{3}$ and tan (A – B) = $\dfrac{1}{\sqrt{3}}$ ,0° < A + B ≤ 90°; A > B, find A and B.
Solution:

tan (A + B) = $\sqrt{3}$

Since $\sqrt{3}$ = tan 60°

Now substitute the degree value

⇒ tan (A + B) = tan 60°

(A + B) = 60° … (i)

The above equation is assumed as equation (i)

tan (A – B) = $\dfrac{1}{\sqrt{3}}$

Since $\dfrac{1}{\sqrt{3}}$ = tan 30°

Now substitute the degree value

⇒ tan (A – B) = tan 30°

(A – B) = 30° … equation (ii)

Now add the equation (i) and (ii), we get

A + B + A – B = 60° + 30°

Cancel the terms B

2A = 90°

A= 45°

Now, substitute the value of A in equation (i) to find the value of B

45° + B = 60°

B = 60° – 45°

B = 15°

Therefore A = 45° and B = 15°

Question 4 State whether the following are true or false. Justify your answer.
(i) sin (A + B) = sin A + sin B.
(ii) The value of sin θ increases as θ increases.
(iii) The value of cos θ increases as θ increases.
(iv) sin θ = cos θ for all values of θ.
(v) cot A is not defined for A = 0°.
Solution:

(i) False.

Justification:

Let us take A = 30° and B = 60°, then

Substitute the values in the sin (A + B) formula, we get

sin (A + B) = sin (30° + 60°) = sin 90° = 1 and,

sin A + sin B = sin 30° + sin 60°

= $\dfrac{1}{2}$ + $\dfrac{\sqrt{3}}{2}$ = 1+$\dfrac{\sqrt{3}}{2}$

Since the values obtained are not equal, the solution is false.

(ii) True.

Justification:

According to the values obtained as per the unit circle, the values of sin are:

sin 0° = 0

sin 30° =$\dfrac{ 1}{2}$

sin 45° = $\dfrac{1}{\sqrt{2}}$

sin 60° = $\dfrac{\sqrt{3}}{2}$

sin 90° = 1

Thus the value of sin θ increases as θ increases. Hence, the statement is true

(iii) False.

According to the values obtained as per the unit circle, the values of cos are:

cos 0° = 1

cos 30° =$\dfrac{ \sqrt{3}}{2}$

cos 45° = $\dfrac{1}{\sqrt{2}}$

cos 60° = 1/2

cos 90° = 0

Thus, the value of cos θ decreases as θ increases. So, the statement given above is false.

(iv) False

sin θ = cos θ, when a right triangle has 2 angles of ($\dfrac{π}{4}$). Therefore, the above statement is false.

(v) True.

Since cot function is the reciprocal of the tan function, it is also written as:

cot A = $\dfrac{cos A}{sin A}$

Now substitute A = 0°

cot 0° = $\dfrac{cos 0°}{sin 0°}$ = $\dfrac{1}{0}$ = undefined.

Hence, it is true

Share with Friends