Easy Tutorial
For Competitive Exams

CBSE 10th Maths Chapter 8 - Introduction to Trigonometry-Exercise 8.4

Question 1 Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Solution:

To convert the given trigonometric ratios in terms of cot functions, use trigonometric formulas

We know that,

$cosec^{2}A – cot^{2}A$ = 1

$cosec^{2}A$ = $1 + cot^{2}A$

Since cosec function is the inverse of sin function, it is written as

$\dfrac{1}{sin^{2}A}$ = $1 + cot^{2}A$

Now, rearrange the terms, it becomes

$sin^{2}A$ = $\dfrac{1}{(1+cot^{2}A)}$

Now, take square roots on both sides, we get

sin A = ±$\dfrac{1}{(√(1+cot^{2}A)}$

The above equation defines the sin function in terms of cot function

Now, to express sec function in terms of cot function, use this formula

$sin^{2}A$ = $\dfrac{1}{ (1+cot^{2}A)}$

Now, represent the sin function as cos function

$1 – cos^{2}A$ = $\dfrac{1}{ (1+cot^{2}A)}$

Rearrange the terms,

$cos^{2}A$ = 1 – $\dfrac{1}{(1+cot^{2}A)}$

⇒$cos^{2}A$ = $\dfrac{(1-1+cot^{2}A)}{(1+cot^{2}A)}$

Since sec function is the inverse of cos function,

⇒ $\dfrac{1}{sec^{2}A}$ = $\dfrac{cot^{2}A}{(1+cot^{2}A)}$

Take the reciprocal and square roots on both sides, we get

⇒ sec A = ±$\dfrac{\sqrt{ (1+cot^{2}A)}}{cotA}$

Now, to express tan function in terms of cot function

tan A = $\dfrac{sin A}{cos A}$ and cot A = $\dfrac{cos A}{sin A}$

Since cot function is the inverse of tan function, it is rewritten as

tan A = $\dfrac{1}{cot A}$

Question 2 Write all the other trigonometric ratios of ∠A in terms of sec A.
Solution:

Cos A function in terms of sec A:

sec A = $\dfrac{1}{cos A}$

⇒ cos A = $\dfrac{1}{sec A}$

sec A function in terms of sec A:

$cos^{2}A + sin^{2}A $= 1

Rearrange the terms

$sin^{2}A $= $1 – cos^{2}A$

$sin^{2}A$ = 1 – ($\dfrac{1}{sec^{2}A}$)

$sin^{2}A$ = $\dfrac{(sec^{2}A-1)}{sec^{2}A}$

sin A = ± $\dfrac{\sqrt{(sec^{2}A-1)}}{sec A}$

cosec A function in terms of sec A:

sin A = $\dfrac{1}{cosec A}$

⇒cosec A = $\dfrac{1}{sin A}$

cosec A = ± $\dfrac{sec A}{\sqrt(sec^{2}A-1)}$

Now, tan A function in terms of sec A:

$sec^{2}A – tan^{2}A$ = 1

Rearrange the terms

⇒ $tan^{2}A$ = $sec^{2}A – 1$

tan A = $\sqrt{(sec^{2}A – 1)}$

cot A function in terms of sec A:

tan A = $\dfrac{1}{cot A}$

⇒ cot A = $\dfrac{1}{tan A}$

cot A = ±$\dfrac{1}{\sqrt{(sec^{2}A – 1)}}$

Question 3 Evaluate:
(i) $(sin^{2}63° + sin^{2}27°)/(cos^{2}17° + cos^{2}73°)$
(ii) sin 25° cos 65° + cos 25° sin 65°
Solution:

(i) $\dfrac{(sin^{2}63° + sin^{2}27°)}{(cos^{2}17° + cos^{2}73°)}$

To simplify this, convert some of the sin functions into cos functions and cos function into sin function and it becomes,

= $\dfrac{[sin^{2}(90°-27°) + sin^{2}27°] }{ [cos^{2}(90°-73°) + cos^{2}73°)]}$

= $\dfrac{(cos^{2}27° + sin^{2}27°)}{(sin^{2}27° + cos^{2}73°)}$

= $\dfrac{1}{1}$ =1 (since $sin^{2}A + cos^{2}A$ = 1)

Therefore, $\dfrac{(sin^{2}63° + sin^{2}27°)}{(cos^{2}17° + cos^{2}73°)}$ = 1

(ii) sin 25° cos 65° + cos 25° sin 65°

To simplify this, convert some of the sin functions into cos functions and cos function into sin function and it becomes,

= sin(90°-25°) cos 65° + cos (90°-65°) sin 65°

= cos 65° cos 65° + sin 65° sin 65°

= $cos^{2}65° + sin^{2}65° = 1 (since sin^{2}A + cos^{2}A = 1)$

Therefore, sin 25° cos 65° + cos 25° sin 65° = 1

Question 4 Choose the correct option. Justify your choice.
(i) $9 sec^{2}A – 9 tan^{2}A$ =
(A) 1 (B) 9 (C) 8 (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
(A) 0 (B) 1 (C) 2 (D) – 1
(iii) (sec A + tan A) (1 – sin A) =
(A) sec A (B) sin A (C) cosec A (D) cos A
(iv) $1+tan^{2}A/1+cot^{2}A$ =
(A) $sec^{2} A$ (B) -1 (C) $cot^{2}A$ (D) $tan^{2}A$
Solution:

(i) (B) is correct.

Justification:

Take 9 outside, and it becomes

$9 sec^{2}A – 9 tan^{2}A$

= 9 $(sec^{2}A – tan^{2}A)$

= 9×1 = 9 (∵ $sec^{2} A – tan^{2} A$ = 1)

Therefore, 9 $sec^{2}A – 9 tan^{2}A$ = 9

(ii) (C) is correct

Justification:

(1 + tan θ + sec θ) (1 + cot θ – cosec θ)

We know that, tan θ = sin θ/cos θ

sec θ = $\dfrac{1}{ cos θ}$

cot θ = $\dfrac{cos θ}{sin θ}$

cosec θ = $\dfrac{1}{sin θ}$

Now, substitute the above values in the given problem, we get

=$(1 + \dfrac{sin θ}{cos θ} + \dfrac{1}{ cos θ}) (\dfrac{1 + cos θ}{sin θ} – \dfrac{1}{sin θ})$

Simplify the above equation,

= $\dfrac{(cos θ +sin θ+1)}{cos θ} × \dfrac{(sin θ+cos θ-1)}{sin θ}$

= $\dfrac{(cos θ+sin θ)^{2}-1^{2}}{(cos θ sin θ)}$

= $\dfrac{(cos^{2}θ + sin^{2}θ + 2cos θ sin θ -1)}{(cos θ sin θ)}$

= $\dfrac{(1+ 2cos θ sin θ -1)}{(cos θ sin θ)}$ (Since $cos^{2}θ + sin^{2}θ$ = 1)

= $\dfrac{(2cos θ sin θ)}{(cos θ sin θ)}$ = 2

Therefore, (1 + tan θ + sec θ) (1 + cot θ – cosec θ) =2

(iii) (D) is correct.

Justification:

We know that,

Sec A= $\dfrac{1}{cos A}$

Tan A = $\dfrac{sin A }{ cos A}$

Now, substitute the above values in the given problem, we get

(secA + tanA) (1 – sinA)

=$ (\dfrac{1}{cos A} + \dfrac{sin A}{cos A}) (1 – sinA)$

= (1+$\dfrac{sin A}{cos A}$) (1 – sinA)

= $\dfrac{(1 – sin^{2}A)}{cos A}$

= $\dfrac{cos^{2}A}{cos A}$ = cos A

Therefore, (secA + tanA) (1 – sinA) = cos A

(iv) (D) is correct.

Justification:

We know that,

$tan^{2}A$ =$\dfrac{1}{cot^{2}A}$

Now, substitute this in the given problem, we get

$\dfrac{1+tan^{2}A}{1+cot^{2}A}$

= $\dfrac{(1+\dfrac{1}{cot^{2}A})}{1+cot^{2}A}$

= $(cot^{2}A+\dfrac{1}{cot^{2}A})×(\dfrac{1}{1+cot^{2}A})$

= $\dfrac{1}{cot^{2}A}$ = $tan^{2}A$

So, $\dfrac{1+tan^{2}A}{1+cot^{2}A}$ = $tan^{2}A$

Question 5 Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(i) $(cosec θ – cot θ)^{2}$ = $\dfrac{(1-cos θ)}{(1+cos θ)}$


(ii) $\dfrac{cos A}{(1+sin A)}$ + $\dfrac{(1+sin A)}{cos A}$ = 2 sec A


(iii) $\dfrac{tan θ}{(1-cot θ)}$ + $\dfrac{cot θ}{(1-tan θ)}$ = 1 + sec θ cosec θ
[Hint : Write the expression in terms of sin θ and cos θ]


(iv) $\dfrac{(1 + sec A)}{sec A}$ = $\dfrac{sin2A}{(1-cos A) }$
[Hint : Simplify LHS and RHS separately]


(v) $\dfrac{( cos A–sin A+1)}{( cos A +sin A–1)}$ = cosec A + cot A, using the identity $cosec^{2}A$ = $1+cot^{2}A$.


(vi)$\sqrt{\dfrac{1+sinA}{1-sinA}}$=secA+tanA


(vii) $\dfrac{(sin θ – 2sin^{3}θ)}{(2cos^{3}θ-cos θ)}$ = tan θ


(viii) (sin A + cosec A)$^{2}$ + (cos A + sec A)$^{2}$ = 7+tan2A+cot2A


(ix) (cosec A – sin A)(sec A – cos A) = $\dfrac{1}{(tan A+cotA)}$
[Hint : Simplify LHS and RHS separately]


(x) ($\dfrac{1+tan^{2}A}{1+cot^{2}A}$) = ($\dfrac{1-tan A}{1-cot A})^{2}$ = $tan^{2}A$
Solution:

(i) $(cosec θ – cot θ)^{2}$ = $\dfrac{(1-cos θ)}{(1+cos θ)}$

To prove this, first take the Left-Hand side (L.H.S) of the given equation, to prove the Right Hand Side (R.H.S)

L.H.S. = $(cosec θ – cot θ)^{2}$

The above equation is in the form of $(a-b)^{2}$, and expand it

Since $(a-b)^{2}$ = a$^{2}$ + b$^{2}$ – 2ab

Here a = cosec θ and b = cot θ

= $(cosec^{2}θ + cot^{2}θ – 2cosec θ cot θ)$

Now, apply the corresponding inverse functions and equivalent ratios to simplify

= $(\dfrac{1}{sin^{2}θ} + \dfrac{cos^{2}θ}{sin^{2}θ} – \dfrac{2cos θ}{sin^{2}θ}$

= $\dfrac{(1 + cos^{2}θ – 2cos θ)}{(1 – cos^{2}θ)}$

= $\dfrac{(1-cos θ)^{2}}{(1 – cosθ)(1+cos θ)}$

= $\dfrac{(1-cos θ)}{(1+cos θ)}$ = R.H.S.

Therefore,$ (cosec θ – cot θ)^{2}$ = $\dfrac{(1-cos θ)}{(1+cos θ)}$

Hence proved.

(ii)$ (\dfrac{cos A}{(1+sin A)} + \dfrac{(1+sin A)}{cos A} $= 2 sec A

Now, take the L.H.S of the given equation.

L.H.S. = $(\dfrac{cos A}{(1+sin A)}) + (\dfrac{(1+sin A)}{cos A})$

=$ [cos^{2}A + \dfrac{(1+sin A)^{2}]}{(1+sin A)cos A}$

= $\dfrac{(cos^{2}A + sin^{2}A + 1 + 2sin A)}{(1+sin A) cos A}$

Since $cos^{2}A + sin^{2}A$ = 1, we can write it as

= $\dfrac{(1 + 1 + 2sin A)}{(1+sin A) cos A}$

= $\dfrac{(2+ 2sin A)}{(1+sin A)cos A}$

= $\dfrac{2(1+sin A)}{(1+sin A)cos A}$

= $\dfrac{2}{cos A}$ = 2 sec A = R.H.S.

L.H.S. = R.H.S.

($\dfrac{cos A}{(1+sin A)}) + (\dfrac{(1+sin A)}{cos A)}$ = 2 sec A

Hence proved.

(iii) $\dfrac{tan θ}{(1-cot θ)}$ + $\dfrac{cot θ}{(1-tan θ) }$= 1 + sec θ cosec θ

L.H.S. =$\dfrac{ tan θ}{(1-cot θ)} + \dfrac{cot θ}{(1-tan θ)}$

We know that tan θ =$\dfrac{sin θ}{cos θ}$

cot θ = $\dfrac{cos θ}{sin θ}$

Now, substitute it in the given equation, to convert it in a simplified form

=$ [\dfrac{(\dfrac{sin θ}{cos θ})}{1-(\dfrac{cos θ}{sin θ}}] + [\dfrac{(\dfrac{cos θ}{sin θ})}{1-(\dfrac{sin θ}{cos θ})}]$

= [$\dfrac{(\dfrac{sin θ}{cos θ})}{\dfrac{(sin θ-cos θ)}{sin θ}}] + [\dfrac{(\dfrac{cos θ}{sin θ}}{\dfrac{(cos θ-sin θ)}{cos θ}}]$

= $\dfrac{sin^{2}θ}{[cos θ(sin θ-cos θ)]} +\dfrac {cos^{2}θ}{[sin θ(cos θ-sin θ)]}$

= $\dfrac{sin^{2}θ}{[cos θ(sin θ-cos θ)]} – \dfrac{cos^{2}θ}{[sin θ(sin θ-cos θ)]}$

= $\dfrac{1}{(sin θ-cos θ) [(sin^{2}θ/cos θ)} – (\dfrac{cos^{2}θ}{sin θ)}]$

= $\dfrac{1}{(sin θ-cos θ)} × [\dfrac{(sin^{3}θ – cos^{3}θ)}{sin θ cos θ}]$

= [$\dfrac{(sin θ-cos θ)(sin^{2}θ+cos^{2}θ+sin θ cos θ)]}{[(sin θ-cos θ)sin θ cos θ]}$

= $\dfrac{(1 + sin θ cos θ)}{sin θ cos θ}$

= $\dfrac{1}{sin θ cos θ}$ + 1

= 1 + sec θ cosec θ = R.H.S.

Therefore, L.H.S. = R.H.S.

Hence proved

(iv) $\dfrac{(1 + sec A)}{sec A}$ = $\dfrac{sin^{2}A}{(1-cos A)}$

First find the simplified form of L.H.S

L.H.S. = $\dfrac{(1 + sec A)}{sec A}$

Since secant function is the inverse function of cos function and it is written as

=$\dfrac{ (1 + \dfrac{1}{cos A})}{\dfrac{1}{cos A}}$

= $\dfrac{\dfrac{(cos A + 1)}{cos A}}{\dfrac{1}{cos A}}$

Therefore, $\dfrac{(1 + sec A)}{sec A}$ = cos A + 1

R.H.S. = $\dfrac{sin^{2}A}{(1-cos A)}$

We know that $sin^{2}A$ = $(1 – cos^{2}A)$, we get

= $\dfrac{(1 – cos^{2}A)}{(1-cos A)}$

= $\dfrac{(1-cos A)(1+cos A)}{(1-cos A)}$

Therefore, $\dfrac{sin^{2}A}{(1-cos A)}$= cos A + 1

L.H.S. = R.H.S.

Hence proved

(v) $\dfrac{(cos A–sin A+1)}{(cos A+sin A–1)}$ = cosec A + cot A, using the identity $cosec^{2}A $= $1+cot^{2}A$.

With the help of identity function, $cosec^{2}A$ = $1+cot^{2}A$, let us prove the above equation.

L.H.S. = $\dfrac{(cos A–sin A+1)}{(cos A+sin A–1)}$

Divide the numerator and denominator by sin A, we get

= $\dfrac{\dfrac{(cos A–sin A+1)}{sin A}}{\dfrac{(cos A+sin A–1)}{sin A}}$

We know that $\dfrac{cos A}{sin A}$ = cot A and $\dfrac{1}{sin A}$ = cosec A

= $\dfrac{(cot A – 1 + cosec A)}{(cot A+ 1 – cosec A)}$

= $\dfrac{(cot A – cosec^{2}A + cot^{2}A + cosec A)}{(cot A+ 1 – cosec A)}$ (using $cosec^{2}A – cot^{2}A$ = 1

=$\dfrac{ [(cot A + cosec A) – (cosec^{2}A – cot^{2}A)]}{(cot A+ 1 – cosec A)}$

= $\dfrac{[(cot A + cosec A) – (cosec A + cot A)(cosec A – cot A)]}{(1 – cosec A + cot A)}$

= $\dfrac{(cot A + cosec A)(1 – cosec A + cot A)}{(1 – cosec A + cot A)}$

= cot A + cosec A = R.H.S.

Therefore, $\dfrac{(cos A–sin A+1)}{(cos A+sin A–1)}$ = cosec A + cot A

Hence Proved

(vi)$\sqrt{\dfrac{1+sinA}{1-sinA}}$=secA+tanA

L.H.S=$\sqrt{\dfrac{1+sinA}{1-sinA}}$

First divide the numerator and denominator of L.H.S. by cos A,

=$\sqrt{\dfrac{\dfrac{1}{cos A}+\dfrac{sin A}{cos A}}{\dfrac{1}{cos A}-\dfrac{sin A}{cos A}}}$

We know that 1/cos A = sec A and sin A/ cos A = tan A and it becomes,

= $\dfrac{\sqrt(sec A+ tan A)}{(sec A-tan A)}$

Now using rationalization, we get

=$\sqrt{\dfrac{sec A+tan A}{sec A-tan A}}$x$\sqrt{\dfrac{sec A+tan A}{sec A+tan A}}$

=$\sqrt{\dfrac{(sec A+tan A)^{2}}{sec^{2}A-tan^{2}A}}$

=$\dfrac{ (sec A + tan A)}{1}$

= sec A + tan A = R.H.S

Hence proved

(vii) $\dfrac{ (sin θ – 2sin^{3}θ)}{(2cos^{3}θ-cos θ)}$ = tan θ

L.H.S. = $\dfrac{ (sin θ – 2sin^{3}θ)}{(2cos^{3}θ – cos θ)}$

Take sin θ as in numerator and cos θ in denominator as outside, it becomes

= $\dfrac{ [sin θ(1 – 2sin^{2}θ)]}{[cos θ(2cos^{2}θ- 1)]}$

We know that $sin^{2}θ$ = $1-cos^{2}θ$

= $\dfrac{sin θ[1 – 2(1-cos^{2}θ)]}{[cos θ(2cos^{2}θ -1)]}$

= $\dfrac{[sin θ(2cos^{2}θ -1)]}{[cos θ(2cos^{2}θ -1)]}$

= tan θ = R.H.S.

Hence proved

(viii) $(sin A + cosec A)^{2} + (cos A + sec A)^{2} $= $7+tan^{2}A+cot^{2}A$

L.H.S. = $(sin A + cosec A)^{2} + (cos A + sec A)^{2}$

It is of the form $(a+b)^{2}$, expand it

$(a+b)^{2}$=$a^{2} + b^{2} +2ab$

= $(sin^{2}A + cosec^{2}A + 2 sin A cosec A) + (cos^{2}A + sec^{2}A + 2 cos A sec A)$

= $(sin^{2}A + cos^{2}A) + 2 sin A(1/sin A) + 2 cos A(1/cos A) + 1 + tan^{2}A + 1 + cot^{2}A$

= $1 + 2 + 2 + 2 + tan^{2}A + cot^{2}A$

= $7+tan^{2}A+cot^{2}A $= R.H.S.

Therefore, $(sin A + cosec A)^{2} + (cos A + sec A)^{2}$ = $7+tan^{2}A+cot^{2}A$

Hence proved.

(ix) (cosec A – sin A)(sec A – cos A) = $\dfrac{1}{(tan A+cotA)}$

First, find the simplified form of L.H.S

L.H.S. = (cosec A – sin A)(sec A – cos A)

Now, substitute the inverse and equivalent trigonometric ratio forms

= $(\dfrac{1}{sin A – sin A})(\dfrac{1}{cos A – cos A})$

=$ [\dfrac{(1-sin^{2}A)}{sin A}][\dfrac{(1-cos^{2}A)} {cos A}]$

= $(\dfrac{cos^{2}A}{sin A})×(\dfrac{sin^{2}A}{cos A})$

= cos A sin A

Now, simplify the R.H.S

R.H.S. =$\dfrac{ 1}{(tan A+cotA)}$

= $\dfrac{1}{(\dfrac{sin A}{cos A} +\dfrac{cos A}{sin A})}$

= $\dfrac{1}{[(sin^{2}A+\dfrac{cos^{2}A)}{sin A cos A}]}$

= cos A sin A

L.H.S. = R.H.S.

(cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)

Hence proved

(x) $(\dfrac{1+tan^{2}A}{1+cot^{2}A})$ = $(\dfrac{1-tan A}{1-cot A})^{2} = tan^{2}A$

L.H.S. = $(\dfrac{1+tan^{2}A}{1+cot^{2}A})$

Since cot function is the inverse of tan function,

= $(\dfrac{1+tan^{2}A}{1+\dfrac{1}{tan^{2}A}})$

= $\dfrac{1+tan^{2}A}{[\dfrac{(1+tan^{2}A)}{tan^{2}A]}}$

Now cancel the $1+tan^{2}A$ terms, we get

= $tan^{2}A$

$(\dfrac{1+tan^{2}A}{1+cot^{2}A})$ = $tan^{2}A$

Similarly,

$(\dfrac{1-tan A}{1-cot A})^{2}$ = $tan^{2}A$

Hence proved

Share with Friends